Bipartite distance-regular graphs and the Q-polynomial property; the combinatorial meaning of q

نویسندگان

  • Paul Terwilliger
  • Stefko Miklavic
چکیده

These problems are inspired by a careful study of the papers of concerning bipartite distance-regular graphs. Throughout these notes we let Γ = (X, R) denote a bipartite distance-regular graph with diameter D ≥ 3 and standard module V = C X. We fix a vertex x ∈ X and let E denote the corresponding dual primitive idempotents. We define the matrices R = D i=0 E * i+1 AE * i , L= D i=0 E * i−1 AE * i , where E * D+1 = 0 and E * −1 = 0. We call R (resp. L) the raising matrix (resp. lowering matrix) with respect to x. We recall R + L = A and R t = L, where t denotes transpose. 1 Motivation: some comments on the Q-polynomial property Let E denote a nontrivial primitive idempotent of Γ and let θ * 0 , θ * 1 ,. .. , θ * D denote the corresponding dual eigenvalue sequence. Throughout this section we assume that Γ is Q-polynomial with respect to E. By Leonard's theorem the expressions θ * i−2 − θ * i+1 θ * i−1 − θ * i (1) are independent of i for 2 ≤ i ≤ D − 1. We define β ∈ R so that β + 1 is equal to the common value of (1). We let q denote a nonzero scalar in C such that q + q −1 = β. Our goal in this section is to get a combinatorial description of q.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new constructions of imprimitive cometric association schemes

In a recent paper [9], the authors introduced the extended Q-bipartite double of an almost dual bipartite cometric association scheme. Since the association schemes arising from linked systems of symmetric designs are almost dual bipartite, this gives rise to a new infinite family of 4-class cometric schemes which are both Q-bipartite and Q-antipodal. These schemes, the schemes arising from lin...

متن کامل

On Bipartite Q-Polynomial Distance-Regular Graphs with Diameter 9, 10, or 11

Let Γ denote a bipartite distance-regular graph with diameter D. In [J. S. Caughman, Bipartite Q-polynomial distance-regular graphs, Graphs Combin. 20 (2004), 47–57], Caughman showed that if D > 12, then Γ is Q-polynomial if and only if one of the following (i)-(iv) holds: (i) Γ is the ordinary 2D-cycle, (ii) Γ is the Hamming cube H(D, 2), (iii) Γ is the antipodal quotient of the Hamming cube H...

متن کامل

A ug 2 00 5 Almost - bipartite distance - regular graphs with the Q - polynomial property ∗

Let Γ denote a Q-polynomial distance-regular graph with diameter D ≥ 4. Assume that the intersection numbers of Γ satisfy ai = 0 for 0 ≤ i ≤ D − 1 and aD 6= 0. We show that Γ is a polygon, a folded cube, or an Odd graph.

متن کامل

Almost-bipartite distance-regular graphs with the Q-polynomial property

Let Γ denote a Q-polynomial distance-regular graph with diameter D ≥ 4. Assume that the intersection numbers of Γ satisfy ai = 0 for 0 ≤ i ≤ D − 1 and aD 6= 0. We show that Γ is a polygon, a folded cube, or an Odd graph.

متن کامل

The Parameters of Bipartite Q-polynomial Distance-Regular Graphs

Let denote a bipartite distance-regular graph with diameter D ≥ 3 and valency k ≥ 3. Suppose θ0, θ1, . . . , θD is a Q-polynomial ordering of the eigenvalues of . This sequence is known to satisfy the recurrence θi−1 − βθi + θi+1 = 0 (0 < i < D), for some real scalar β. Let q denote a complex scalar such that q + q−1 = β. Bannai and Ito have conjectured that q is real if the diameter D is suffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005